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CHAPTER1

Testing for the stationarity and the stability of
equilibrium: with applications to international
capital markets

Mototsugu Fukushige, Michio Hatanaka,
and Yasuji Koto

1 A STATISTICAL TEST FOR THE STATIONARITY AND
THE STABILITY OF EQUILIBRIUM

1.1 Introduction

One of the most important developments in econometrics in the 1980s is
what has been conveniently summarized as the unit root. Concerning the
least-squares estimator of an autoregressive parameter, say p, its asympto-
tic distribution when the true p is unity is different from that when |p| is less
than unity, as shown by Dickey and Fuller (1979) and Phillips (1987). The
point is important in applied econometrics because the finite sample
distribution when |p| is less than but near unity resembles the asymptotic
distribution for p=1 more closely than the asymptotic distribution for
Ipl <1.! One implication is that the power in testing p= 1 against [p| <1 by
the least-squares estimator is bound to be low when the sample size is not
very large. Nevertheless we are frequently compelled to discriminate
between p=1 and |p| <1 by the economic and statistical problems.
However, as judged from the articles published or yet unpublished as of
the time of the present writing, the latest research efforts are somewhat
counteracting to the previous ones: (1) The Bayesian inference contains no
such anomaly as found in the sampling approach (see Zellner, 1971, p.187),
but a number of problems arise on the prior. Sims (1988) points out that
economic theories do not necessarily justify a sharp point prior placed on
p=1,and Wago and Tsurumi (1991) refer to the inference problems caused
by such a prior.2 Phillips (1991) criticizes the flat prior as a representation of
ignorance. (2) The wisdom of taking p =1 for the null hypothesis has been
questioned, and the stationarity for the null hypothesis has been investi-
gated in Park (1990), Fukushige and Hatanaka (1989), Ogaki and Park
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4 M. Fukushige, M. Hatanaka, and Y. Koto

(1989), Fisher and Park (1990), and Bierens (1990). Schotman and van Dijk
(1990, 1991) treat the stationarity and the unit root symmetrically and
derive a posterior odds ratio. (3) As regards Nelson and Plosser (1982),
which revealed the importance of the unit root in economic data, Schmidt
and Phillips (1992), Choi (1990), and Haldrup (1990) find drawbacks in the
method used. Each proposes a revised method within the framework of
sampling approach, and Choi (1990) in particular argues that his revision
reverses the conclusion of Nelson and Plosser. From the standpoint of the
Bayesian inference DeJong and Whiteman (1991) also reverse the conclu-
sion of Nelson and Plosser (1982). It seems that the Box—Jenkins modeling
of trends should be considered with a grain of salt.

In the sampling school the null hypothesis is such that one wishes to
control the probability of rejecting it mistakenly when it is indeed true. In
the Box—Jenkins modeling of time series the failure to difference when
differencing is required induces a serious loss in the subsequent inference,
and we wish to control the probability of such a failure. In our opinion it
makes sense to take p= 1 for the null hypothesis in the Box—Jenkins type of
time series analysis. However, in testing for cointegration, which is the
stationarity in the residual of a relationship (see Engle and Granger, 1987),
it might make more sense to have the cointegration for the null hypothesis.
It would depend upon the purpose of the cointegration analysis.3

The present chapter, which is a revised version of Fukushige and
Hatanaka (1989), presents a method for testing stationarity against non-
stationarity in a scalar autoregressive process, taking stationarity for the
null hypothesis. Many methods are now available for such tests. Our
method differs from the others in the following two points: (1) we do not
assume that the dominating root(s) of the characteristic equation is (are)
real; (2) the non-stationarity includes not only the moduli of roots equal to
unity but also those exceeding unity. Thus the unity is nothing more than
the boundary of the non-stationarity region. In both of these two points our
approach is more general than the Box—Jenkins’.

After our test for stationarity is presented, we shall apply it to the error of
the equilibrium relation in economic theory. The stationarity of the error is
equivalent to the stability of the equilibrium in the sense in which the word
is used in economic theory, and the Box—Jenkins modeling of trends is
irrelevant to this equivalence. For many decades stability has been con-
sidered an important property of any economic equilibrium theory,
without which the theory is rendered meaningless. Even though the
empirical validity of stability has seldom been questioned, important
exceptions are, for example, stability in the equilibrium of trade balances in
terms of the Marshall-Lerner condition and stability in the markets that
are driven by speculation. As for the latter example, as theories of
expectation have advanced since the mid 1970s, questions regarding
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stability are now phrased in terms of convergence of an economy with
sunspots to a particular equilibrium unaffected by them (see Azariadis,
1981), and also in terms of the convergence of expectations formation to
rational expectations (see Marcet and Sargent, 1989). In testing stability
empirically in these cases, economic theorists have a “prior feeling” that
stability is likely to hold true, and the suggestion by Cox and Hinkley (1974,
p. 65)is that stability should be taken for the null hypothesis in such a case.*

1.2 The model and notation

Consider a scalar autoregressive process, {y,}, generated by
(I1=bL—=...= b, L)y, =pu+te, Q2.n

where L is the lag operator and {e,} is an iid Gaussian scalar process with
mean zero and variance ¢°. The order, p, is assumed to be known while we
develop the stationarity test. The characteristic equation associated with
2.1)is

N—bN 1= —b,=0 (2.2)

The stationarity of (2.1) is that the dominating roots of (2.2) are less than
unity in moduli, and the non-stationarity is that the dominating roots are
equal to or larger than unity in moduli. Our task is to test the former against
the latter.

A portion of {y,}, y'=(yy,...,y7) is observed. Construct a T x T matrix

00
10 -
S= 010
0- 010
Sy=0,yy,...,yr_1) and S’y =(y,,...,y;,0)' so that S and S’ represent a 7
periods lagg and forward respectively. Moreover

{ST“‘=0 for h>0

SSI=1_ elell’ SIS=I_ eTeT, (23)

where e,"=(1,0,...,0) and e/ =(0,...,0,1). For any non-stochastic vector,
¢'=(cy,...,c,), we construct
S()=l-¢S—...—¢S7
Let d, (=1),d,,d,, ... be such that identity with respect to x
(I=ex—...—ex(1+dx+dx?+..)=1
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No matter whether the sequence {d;} converges or not
Sy 1=I+d,S+...+dp_,ST!
holds exactly because of (2.3). Moreover det[S(c)] = 1 =det[S(c)~!].

1.3 Testing for stationarity in an expository model

Though we shall present later our testing procedure for a general order p,
the basic ideas may be explained more simply for the simplest case

(I1—-pL)y,=pu+e,t=1,...,T 3.1

where y, is unobservable, and |p| may exceed unity. The root of the
characteristic equation is p. We write S(p)=I—pS. No matter whether
fpl=1or <1, 8(p) t=I+S+...+pT" 187! holds exactly. If |p| <1 y, does
not take an important part in the asymptotic analysis, but if |p| > 1 it may
have a decisively important role.

Letc=(1,...,1),and € =(ey,...,¢7). The matrix representation of (3.1) is

S(p)y —pyoer=pte (3.1
which gives the probability density function of y conditional upon y,.
Assume that y, is distributed in the normal distribution with mean p+ and
variance o+2. The joint density of y and y, is derived, and from it one can
obtain the density of y alone by integrating y, out. In fact y is distributed in
the normal distribution with mean vector

7=S(p)” '(ue + pprey)
and covariance matrix

V=d"S(p)~'(1Ur+ 0x’0 " *p%e1€,)S(p) !
both exactly. From these it follows that

—(2T7) ogdet[V]= —Llog 6 — (2T) 'log(1 + 26~ %p2)
and

@Dy VI y == ~QT%) (O, Ir- 1(S(p)y — o))
(10, I )(S(p)y — p)) — 2o?T) " (1 + 6 2042}y, — PP{;)Z)

No matter whether |p| >, =, < 1,7~ ! times the log of the p.d.f. of y is, apart
from —4log2,

—1log o= (20°T) ([0, 1, \}(S(p)y — ) (O, I,- [(S(p) — o))
+0,(T"1 (3.3)

and (u*,0+?) is hidden in O,(7""), which we ignore.
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Equation (3.3) is simple to deal with, and it will provide a basis for a
number of inference problems. Whichever of the maximum likelihood and
Bayesian approaches may be chosen the least-squares estimator will be
introduced in some context.

We wish to test stationarity, {p| <1, against non-stationarity, |p|>1,
without singling out any particular value of p as a representation of either
region. The Bayesian approach to such problem is to introduce prior
probabilities, p; and p, respectively for |p| <1 and |p| > 1 and then distribute
p; and p, somehow among the p in each region. The prior distribution
within |p| <1 may be uniform, but that for |p|>1 cannot be. Thus some
values have to be chosen for several parameters. The maximum likelihood
approach is the Cox (1961) test for separate families of hypotheses. To
apply the method to our problem the stationarity and non-stationarity
regions have to the separated.’ In so far as the test is applied to the stability
of an economic equilibrium, the “demilitarized zone” should be that part of
the stationarity region which is adjacent to the non-stationarity region.
With a small positive number, §, the null hypothesis is |p| <1—3§; the
alternative hypothesisis [p| > 1; and in developing the testing procedure it is
assumed that p never falls in the demilitarized zone, 1 > |p| > 1 — 8. The basic
idea of Cox (1961) is to maximize the log-likelihood in each of the regions,
lp| <1—38and [p| = 1, and then compare the two maximized likelihoods. For
the asymptotic theory it is found that 8 may be O(T~!*¢), where ¢ is an
arbitrary small positive constant, but we shall assume that § is a constant in
order to simplify the following presentation. The choice of 8 in practice and
the distribution of the test statistic when p does fall in the demilitarized zone
will be considered later in section 1.6. Note that u and ¢ are nuisance
parameters.

If we proceed with Cox’s idea, with the log-likelihood function (3.3), we
would face a non-standard problem. This is because its maximum over
lpl=1 occurs at the boundary, |p|=1, asymptotically with probability 1
provided that y is generated by a value of p such that |p| < 1.6

With a hint found in Quenouille (1957, p. 57) we shall demonstrate that
the p.d.f. of (y,,...,y7_,) conditional upon y;leads us to a problem that is
closer to a standard one. Using

ey =" %1 (3.4)

which is the last row of S(p)~!, the marginal distribution of y; has mean

pr=up) (pe+ puxe;)
and variance,
P o+ (p? = D)7l = ('~ 1) 7'’

vr=o?dp) p) + ox*p?T = if lp| F 1
AT+ ?ifp= =1
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both exactly. It is seen that

1log p2+ O(T" 1) if [p|> 1
QD tlogvp=) QD) 'log T+O(T™Y ifp=+1 (3.5)
o(T-Y) if pl < 1

QT) (yr—pup»r' =0T ") regardless of |p|>,=,<1  (3.6)

Thus T~ times the log of the p.d.f. of (y,,...,y;_,) conditional upon y, i.e.,
the log-likelihood function divided by T, may be approximated as follows.
Let 6= (u, 0% p), and for an arbitrarily small, positive § define

Q;:(1-8)=pl; u and ¢? are unrestricted,
,:lpl=1; p and ¢ are unrestricted.

The log-likelihood function (divided by T) associated with Q, is

L(8)= —Hog o>~ (2o°T) (0,1, [(S(p) — p))’ (3.7.8)
(O, 1,,1)(S(p) — pv)) o

Though (3.6) should not be dropped from the log-likelihood function for 2,
at p= £ 1 (unless u is a priori specified as zero),” we shall consider

L6)= Hog > +3log p* = 2" D) (O LMS()~ ) (5 5 )
(0,1, 1)(S(p) ~ 1)) 7.

defined over ©,. The only difference between (3.7.S) and (3.7.E) is the
presence of $log p? in the latter.

Following Cox(1961) LS(B) and L(6) are maximized over Q, and Q,
respectively. Let §,= (4, 62, p)and 6,=(i,, 62, p.) be the values of § at which
the max1ma occur. The null hypothesis is that the true value of 4,
0= (pro, o5 a0, o), is in the interior of Q,. It is well known that (i) plim §, =6, and

(ii) T*2(4,— 6,) converges in distribution to a normal distribution with zero
2

L
mean vector and covariance matrix (plim—¥,(00))‘1 under the null
. 0000
hypothesis.
We are concerned with the asymptotic properties of 4, under the null
hypothesis. Construct

Boe=(—po 'tos po "0t po \) (3.8)

Lemma 1
Under the null hypothesis plim 4, = 6,,.

Lemma 2 2L
Under the null hypothesis C,=plim — 2000 a8, exists.

P OE(OOe) and TV2(4,— 6,,) are asymptotically normally distributed
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with zero mean. Their covariance matrices are C, and C, ' respectively.

Note that L, is a log-likelihood divided by 7.

Proofof Lemmal Letf( )bethevector valued function representing the
transformation from (u, o%,p) to (—p~'u,p~26%,p 1. (1) If (u, 6% p) is a § in
Q, flp, o?p) is in Q,. (i1) If (u, 0% p) is a 6 in ©, and if [p| = (1 —8)~!, then
S, 0% p) is in 2. We wish to extend this latter relation to include |p| lying
between (1 —8) ! and 1. In fact this is possible because (a) there is nothing
that prevents the extension of the argument p up to |[p| = 1 in (3.7.S) in so far
as |po/ <1 and (b) the 8 at which (3.7.S) is maximized remains unaffected
(with probability as close to 1 as possible) even if Q, is thus extended, in so
far as T is sufficiently large and {py| < 1—8. Notice also f{f(8))=4.
From (2.3) we obtain the identities

S0, I YO, Ir_,]S(p~") = p~28(p) [0, I J'[O, Iy ,]S(p)
+(1 _P_z)(eTeT,_elell): (3 9)

V[0, I J'[0, Ir-1]S(p™ ) = — p~ '[O, Ir— J'[O, Ir-11S(p) )
+(1+p Ner—e)

One can verify that (3.7.E) can be rewritten precisely in

—3log(p~26") — 2(p 26D T) ([0, I 1(S(p~ Dy —( —p7'wW)Y
(O, L7 J(SGe~ Dy —(—p 1)) +8 (3.10)
where
§=QD) (>~ DOF—yD+2u(1+ p)yr—y) — 1D
Since (3.10) is L(f(8))+ 8, we have
L(O)=Lf(0))+38, b2, (3.11)

Suppose that T'is sufficiently large and that the null hypothesis holds. Then
§ is negligible and 6, maximizes L, not only over Q, but also over its
extension mentioned above. Because of (3.11) the global maximum of L (6)
within ©, must be attained near the 8 such that f(6)=4,, i.e., near f(6,).
Notice that 6,,=f(8,). The analysis of the local condition is given in
appendix 1.

Proof of Lemma 2 Construct a 3 x 3 matrix
“Po 0 0
A= 0 p(z) 0
2 2
“poko  ~2p000 PO
Infact A~ !is the Jacobian, df"/00, evaluated at 8,. In (3.11) replace 6 by f(6)

on the left-hand side and f(6) by 8 on the right-hand side with f(#)ef2,, and
then differentiate both sides by 4. It is seen® that
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12) (3.12.E)

2

—1'%0 —A—l'%ﬁ A’ 3.13.E
plmaeael( Oe)_ ( plmaaaer( 0)) ( )

where plim is taken under the null hypothesis. The left-hand sides of
(3.12.E) and (3.13.E) are well understood in terms of the standard

oL, .
asymptotic theory. Through a Taylor expansion of a—(_;(()e)=0, which
should hold if T is sufficiently large,

T2 — 6,,)~(—pli %0 - aLee 3.14.E
(e Oe)—( plmaeael( Oe)) 60( Oe) ( . . )

Lemma 2 follows from (3.12.E) (3.13.E) 3. 14.E) and the well-known fact

27,

with zero mean and the covariance matrix, — plim 200 0,(00) QED
Following Cox (1961) let us try a test statistic,
L(6)— L(6,)—an estimate of E(L(6,)— L.(6.)) (3.15)

where the expectation is under the null hypothesis.

Lemma 3

An estimate of E(L(6,)— L/8,)) is zero. If y, is distributed in the normal
distribution with mean (1 —p)~'g, and variance (1—pg) lop, i.€., the
stationary mean and variance

0=L0)— L)~ (& ) (3.16)

where £ and #? are both y? variable with 1 degree of freedom and mutually
independent.

Proof Consider

X oL, .
Ls(gx) = Lx(e()) + 50, (00)(9s - 0())

) oL, .
Le(ee) = Le(g()e) + ﬁ(OOE)(Oe - BOe)

Using (3.12.E), (3.13.E), and (3.14.E) and

T'2(4,— 6,) = (pllmaa%@ (8,)~ ' T2~ "*"(00) (3.14.5)
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we see that

oL, . oL, .
|55 @@ -5 @b~
is in the order of 0,(T~") rather than O,(T~!) so that
Ly(8) = LA8)=Ly(80) — L(6o) + 0,(T~")
It is easily seen? that

Mo Ho

Ly(60) = L(60) = Qoo D)~} (1 = po){(y1 = =~ 07 )%
Po Po
3.17)
holds exactly. As T— ooy, and y; become independent. QED

We propose to test [p|<1—3§ against [p/>1 with the statistic,
Q=L(8,)— L(6,). Let {=¢— 42, where £ and »? are mutually independent
x> (1). The ¢ such that Prob[|{|>c]=0.05 is 4.364, and the ¢ such that
Prob[j¢{]>¢]=0.01 is 7.208.1° Our test is asymptotically similar as the
distribution of Q is asymptotically free from u and ¢?. The proof of Lemma
3 shows that the test examines the probability structure of the first and the
last observations while using all the observations to estimate 6, and 6,,.

The readers might be perplexed by the fact that the expectation of (3.17)
is zero, which is contradictory to the well-known inequality of information
theory. The explanation is that (3.17) is O,(7 "), while the terms neglected
in arriving at (3.7.S) and (3.7.E) are also O,(T"'); i.e., if we had not
attempted any approximations such as in (3.2) and (3.5) and in dropping
(3.6), then we should have a strictly positive expectation of (3.17). It would
however complicate enormously our computation of §, and §, especially in
the general case that will be considered in the next section. We have decided
to proceed along with (3.7.S) and (3.7.E) without being bothered by the
inequality of the information theory.

Our next task is to demonstrate the consistency of the above test. The
alternative hypothesis is that the true value of 8, 8, = (u,, a3, po), is in ,, in
particular, |pol = 1.

Lemma 4 )
Under the alternative hypothesis plim §,=6,.

Proof In both (3.7.S) and (3.7.E) we shall replace —(2¢*°T)"! ([O, 1]

(S(p)y = p)) (O, Ir- J(S(p)y — p0)) by —(20°T) " '(S(p)y — pt)' (S(p)y — o)
The replacement has no effect upon the result while simplifying the
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following demonstration. The concentration of the revised (3.7.E) with
respect to p and o? gives

$log p? — Hog{ T~ (S(p)y — T~/ S(p)y)' (S(p)y — T~ ''S(p)yv)}
(3.18.E)
which must be maximized over Q,.

(a) The case where p,= £ 1. Let

u=(poet e+ poyoer)

-1
Then y= ) (£ 1YSu, and the second term of (3.18.E) is
j=0
T—1
—Hog{T ' w(I+(1Fp) ) (YU -T 'Y+ (1Fp)

Jj=1

;& 1yS)u}

Atp==x1thetermin{ }isO,(1),butat|p|>1orp=1itis O(T)if u,=0,
and O,(7?) if uy# 0. The probability that (3.18.E) attains its maximum at
lp|>1 or p= F1 is made arbitrarily small by taking T sufficiently large.
Thus plim g,= £ 1.
(b) The case where |py| > 1. From (3.1) we have

S(po Vy=—po 'Sutyrer
ie.

y=—ps 'S0 )V S'u+yplps ") (3.19.E)
where « ) is defined in (3.4). (3.19.E) decomposes y into a stationary
process and an explosive term. When (3.19.E) is substituted into (3.18.E)
the term inside { } in the second log becomes

T~ pg 'S(po )~ S"u+ yrlpe N S(p) (I~ T~ ')

S =po 'Slpo N VSu+ ypulpo
Concerning the maximization of (3.18.E), log p? is dominated by the log of
(3.20.E), and within (3.20.E).
T~ 'y7lps ) S(p) (I— T 1u/)S(p)elpo ')

=T YH(1 = ppo V(1 =po ) = T~ (1= pg )1+ O(lpe| =21}
(3.21.E)

(3.20.E)

dominates other terms. In (3.21.E) { } becomes O(|p,| ~%7) only at p= py.
Asymptotically in probability 1 the maximum of (3.20.E) occurs at p=p,,
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where ydisappears from (3.20.E). It immediately follows that plim 62 = o3,
plim fre= o

Lemma 5
The test statistic Q is unbounded toward minus infinity if |py| > 1.

Proof (a) It follows from Lemma 4 that L (6,) converges in probability to
—4log o5 + 4p5 — . (b) Consider L,(6,) when |py| > 1. As T— o0 3, approaches
to 1 =38if py>1, and to —(1—9) if po< — 1. Thus plim p, exists. It can be
shown that 4, and 6 are not even bounded in probability. Thus
L(6,)= —}log -4 is unbounded.

Thus the consistency of our test has been established.

The above test assumes that the unobserved initial y, is distributed with
the stationary mean and variance. An alternative test statistic will be shown
insection 1.5. Its asymptotic distribution is free from the mean and variance
of yy, but it has a demerit about the size of the test when T'is small and 2 is
large in comparison with o2.

14 Testing for stationarity in the general model

For the case where the order of autoregression, p, is not necessarily 1, our
testing procedure consists of (a) one root test, (b) two roots test, and (c)
combining them. Henceforth a root being non-stationary will mean that the
root is equal to or larger than unity in its modulus. The mode! behind the
one root test is a special case of (2.1),

(I-pL)1—a)L—...—a, | Vy,=p+e 4.1
where |p| may be non-stationary, but the characteristic equation
N l—ag ¥ 2= —q, =0 4.2)

has all roots less than unity in moduli. The largest of the absolute values of
roots of (4.2) is denoted by a, and if p=1, a is set to zero. When p>2 we
assume that |p| exceeds o for the purpose of identification. S(a)=1I—
aS—...~a, S7! for a'=(ay,...,a,_,). Note S(p)S(a)=S(a)S(p). We
write

S@)~'=I+d,S+...+d, ST~}

Here {d} is bounded by a decaying exponential. Denote

~r

a E(_ap—l”--’_a[,])
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0 —a,_; —aq
Ra=|, .. ¢ (T p)
0 0

It is assumed that the initials, y*'=(y_,,1,...,¥,) is distributed in a normal
distribution with mean p» and covariance matrix Y . The model is

S(p)S(@)y + (S(p)R(@) — pe\@)y* =+ €

Integrating y* out of the joint density of y and y*, we have the normal
p.d.f. of y alone with mean

7=S(p)~'S(a) " '(ue— R(p, @)u*)
and covariance matrix

V=aS(p)'S(@)" (I + o7 2R(p, @) *R(p, @))S(a) ~'S(p) ™!
where R(p,a)= S(p)R(a)— pe,d@’. Note that

T
—1log det[V]= — Elog o> —Hlog det[l,+ o6 2R(p,a)' R(p, @)} #]

where the second term on the right-hand side is O(1). Thus 7~ ! times the log
of the p.d.f. of yis

~3log o> = (25°T) ([0, I1— pI(S(p)S(a)y — po))’

(IO, Ir- l(S(p)S(@)y — p)) + O, (T~ 1)
and px and ) = are hidden in O(T-".
As for the marginal distribution of y, its exact variance is

vr=a’lp)'S(@)~'[I+ o 2R(p, @)Y *R(p,a)'1S(a)~""(p)
Thus (—27)7! log vy=(—2T7)"" log up)'S(a)~'S(a) "«p) apart from
O(T™ 1), and

T-1T-1
(o) S@)1S@ " p)= Y, Y debp I+ g T )

i=0 j=0

T — 1) (S pidP(1+0(pl-T),  if lpl> 1
i=0

={ T(3 (£ 1ydy(1 +O(T Y, o=
i=0
O(1) if pj<1

Our parameter is 8= (u, ¢%, p,a’). For non-stationarity we construct
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LPOD) = —3}log o? +}log p? = (20> T) ([0, I'r- Al(S(p)S(a)y —
) (O, Ir- pl(S(p)S(@)y — pv))

over the domain
QW: pi =1, |pla<1, uand ¢? are unrestricted.

If we had eliminated the above condition, [pla<1, there would exist
asymptotically more than one isolated point at which the maximum is
attained, which involves some inconvenience if not a theoretical diffi-
culty.!! For stationarity L, is

L(60)= ~3log o~ (26°T) (O, Ir_ (S(p)S(a)y — o))
(O, I7- A(S(p)S(a)y = wo)

defined over
Q0: 1 —8>|p|>a, u and o? are unrestricted.

The demilitarized zone is 1> |p| > 1 —8. 8" and 6" are the §) where L{"” and
LY are maximized over Q' and Q respectively.

The proofs of the following theorems are quite analogous to those in the
previous section.

Theorem 1

If yis generated by 65" in the interior of Q% in the model (4.1), plim 4" =

-1
(()l’):( PO I~L09 00 P0> aa())'

Theorem 2 2L
Under the same condition CV= —plim— -~ FYI0%, 0(1),

LW
3 0(16)(0(()?) and T8 — 6§)) are asymptotically normally distributed with

zero mean. The covariance matrices are CV and CV~! respectively.

(OOe) exists. Both T2

Theorem 3
Under the same condition and under the assumption that y= is distributed
with the stationary mean vector and covariance matrix,

QU=LY(E") — L")~ D) (&)~ i)

where §(21) and 77(21) are mutually independent x? (1).
The critical points have been indicated in section 1.3.

Theorem 4
If 9" is in Q0" in the model (4.1), plim 8. = 6{".

The only extension of the proof of Lemma 4 which deserves note is that
(3.21.E) is here
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€2

(1-6)?

+ €y
-(1-6

/—5
=2c(1 — 6)
-1 — 6)?

é\ 5
=2l -8 - -6

—(1 - 6)2

Figure 1.1 Stability region

T~y7upo )'S(ay Sleyd—1- lu’)S(;v)S(a)t(;o H

=T" yT{(l_PPO )Z(I_Po 111 cempo A, )
(I1=po )1 =T~ (1—py )2+0(|poi N]
Since a=(qa, .. p ]) is restncted to make the roots of (4.2) less than unity
inmoduli (1—pg 'ay—...—pg 7™ ,—1)° can never be zero, thus necessitating

p= po. Finally

Theorem 5

The test statistic 9 is unbounded toward minus infinity if 6" is in Q¢
The above test will be called the one root test.
The model behind the two roots test is

(1)

(1=2c) Lt LH(1—aL—...—a, ,[P~?)y,=p+te 4.4)
Here we assume that the characteristic equation, ¥ ?—a ¥ *—...—aq,_,
=(), has all roots less than a( < 1) in absolute values. The equation

AN=2¢cA+c,=0 4.5)

has a pair of mutually conjugate complex roots or two real roots that may
possibly be non-stationary. Any points inside the whole triangle in figure
1.1 represent the case where both of two roots of (4.5) have absolute values
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N

\

-

<y

Figure 1.2 Instability region

less than (1—8), whereas any points in the shaded area of figure 1.2
represent the case where both roots have absolute values greater than or
equal to 1. The two roots test compares the triangle in figure 1.1 and the
shaded area in figure 1.2. On the other hand the one root test compares the
shaded area in the triangle in figure 1.1 and the unshaded area outside the
triangle in figure 1.2.

The distribution of (y,, ..., y;) is obtained through integrating the initial
unobservables out, and the distribution of (y,,..., yr_,) conditional upon
(y7—1,yp is derived. Let V. be the covariance matrix of (yr_,y7). If (4.5)
has complex roots, pexp(iw)!? and pexp(— iw) and if [p| > 1, it can be shown
that

detl V1 =p*T| Y. p~id; explijen) 4(1 — p?) =211 — p? exp(i20)| ! X
j=0

J

(1+o(p~2T)



18 M. Fukushige, M. Hatanaka, and Y. Koto

Therefore (27)~' log det[V;]~4log p*=1log c3. If (4.5) has two real roots,
p1» P2, it also holds that 27)~! log det[V'7]~}log pip3=1log ¢3. Thus no
matter whether (4.5) has real or complex roots, we define

LI(0) = —3Hog o> +3og & — (202T) ([0, I'r— pl(S(c)S(a)y — p))’
([0, Ir— pl(S(c)S(@)y — uo)) (4.6.E)

where S(c)=1-2¢,S+¢,8%, S(@)=1—a;S—...—a,_,5% and §P=(u,o?,
¢}, ¢y, a’). Asregards the roots of (4.5) let 5 be max(|p,/, |p,|) in the case of two
real roots and |p} in the case of complex roots. The domain of (4.6.E) is

QP :both of two roots of (4.5) are non-stationary; pa < 1, and o?
are unrestricted.

As for the stationarity,

LP(6P) = —Hlog o2 — 202 T) (O, Ir_ J(S(c)S(@)y — )’
(O, Ir- p)(S(c)S(a)y — p1))
Q:(4.5) has both of two roots between 1 —§ and « in absolute
values; u and ¢? are unrestricted.

(4.6.5)

We define 09 = (1o, 63, Cors Cons ab), 62, and 62 in the same way as above.

Theorem 6
If y is generated with 65 in the interior of O, then plim 62 =62, which is
defined as follows. Two equations, A2—2cuA+ ¢, =0 and ¢g,A2—2¢,,
A -i-2 12= 0 have identical roots, which defines (co.1,Co00) poe = Co2 o> Ooe=
Co2 0¢s Ao, = dop-

A theorem analogous to Theorem 2 holds. Moreover we have

Theorem 7
Under the same condition as in Theorem 6
0@ =LP(EP)— LOEP) > 2T)" (& — ntr)
where ¢h, and np, are mutually independent x5, provided that y« is
distributed in the stationary mean vector and covariance matrix.

The p.d.f. of 5(2)55(22)— »qu) is symmetric about zero, and the p.d.f. over
{»>0 is identical to }x(the p.d.f. of y%). Thus ¢ such that
Prob[|{ > c]=0.05is 5.991.

Theorems analogous to Theorems 4 and 5 also hold.

How to compute 8", 80, 00, 62, §? 0O is explained in appendix 3.

Let us consider how the one root and the two roots test can be combined.
Since (4.1) and (4.4) are both special cases of (2.1), let the roots of (2.2) be r,,
I3 I,...,T, in the order descending in absolute values. Three cases may be
distinguished: (i) ; and r, are both real, and r, may be real or complex; (ii) r,
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is real, and r, and r; are complex conjugates; and (iii) r, and r, are complex
conjugates, and r; may be real or complex. The model of the one root test
consists of (i) and (ii), but does not include (iii). The model of the two roots
test consists of (i) and (iii), but does not include (ii). The unconstrained OLS
estimate of (b;,...,b,) in (2.1) may be used to determine which of (i), (ii), and
(iii) has the highest likelihood. If (ii) is found most likely one should accept
the result in the one root test and ignore the two roots test. If (iii) is found
most likely one should accept the result in the two roots test only. If (i) is
found most likely, the stationarity rejected in the one root test but not
rejected in the two roots test means a single real root being non-stationary,
and the stationarity rejected in the two roots test but not rejected in the one
root test means two real roots being non-stationary.

1.5 An alternative group of tests

We may rewrite (3.2) as
—CDT-—) V==~ R2TA Sy — ) (S(p)y — )

—(26*T)~! (a quadratic function of (y; —u— pu*) with coeffi-
cients involving u*, 0%, o2, and p).

A test alternative to the one in section 1.3 may be based on

L(0)= —3log o>~ 20*T)~(S(p)y — 1) (S(p)y — o),
L(6)= —4log o> +3log p? = (26°T) ™' (S(p)y — 1) (S(p)y — 1)

each to be maximized over Q, and Q, respectively. Let 8,=(ii,, 5, 5,) be the 8
at which the maximum of L(6) occurs. Even if the unobserved initial, y,, is
not distributed with the stationary mean and variance,

O=L6)— L)+ QT) (1 — s, *(1 =) (1 +5)
is distributed as (—27)~! (x3(1) — 1) under the null hypothesis of stationar-
ity. This test is consistent.

Regarding the model (4.1) replace — (262T)~ ([0, I'_,J(S(p)S(a)y — pt))’
(O, I p)(S(p)S(@)y — 1)) by — (26°T)~'(S(p)S(a)y — u) (S(p)S(@)y — pe) in
the definitions of L{( ) and LP( ). With £ ) and £( ) thus
constructed,

0 =L@~ LO@E) + D)1= @751 = 4711+ )

is asymptotically distributed as (—27)~'(x3(1)— 1). Regarding~ the model
(4.4) the same replacement in L?( ) and LP( ) yields £2( ) and
LP( ), and

QO=LPE) - L2+ T71(1— 26, %(1— &)1 = 28,4 &) 1)
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Table 1.113

PRRTIQM>4.364] p=1, u,=0 a priori specified
T=150, 1,000 replications

Po 1-8=0.93 1-8=0.97

0.90 0.05* 0.04*

0.95 0.27** 0.06*

0.98 0.69** 0.27**

1.00 0.91*** 0.68***

1.02 0.98*** 0.95%**

Table 1.2a

P2T1QM) > 4.364) T=100, 1,000 replications
p=2, uy="0 a priori specified
po=1

ay, 1-8=0.92 1-8=0.95 1-6=0.98

0 0.76*** 0.66*** 0.36***

0.5 0.69*** 0.62*** 0.35%**

0.8 0.56%** 0.45%x* 0.30%**

Note:

The first column is the true value of 4, in (4.1). Even in
the case where a, =0, g, is estimated.

is asymptotically distributed as (—27)~1(x¥(2) — 2). The asymptotic distri-
butions of both ¢ and Q@ are free from the mean vector and covariance
matrix of y.

1.6 Simulation studies

So far our simulations have been made only for the cases where a great deal
is a priori known; i.e., not only p is known but it is also known which one of
the models behind the one root and the two roots test holds. Our major
concern here is (1) how small § can be in the lengths of time series data that
are usually used in econometrics, and (2) how the test statistics Q) and Q@
developed in section 1.4 would behave if the true value of dominating roots
falls in the demilitarized zone.

Tables 1.1 through 1.4 show the probabilities of the critical regions
constructed for the 5 percent significance level. The cases where p, falls in
the region of the null hypothesis, the demilitarized zone, and the region of
the alternative hypothesis are indicated by *, =, and *++ respectively. In
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Table 1.2b

P2T1QM| > 4.364] po=1, T=200

ay, 1-86=0095 1-8=0.98

0 0.88*** 0.53***

0.5 0.86*** 0.52%**

0.8 0.69*** 0.46***
Table 1.3
PRTIQ®|>5.991] T=150, p=2, 1,000 replications

(a) Complex root,'# the roots of (4.5) are pexp(iw) and pexp( —iw)

1—-8=0.93 1-6=0.97

s 0.95 1.00 0.95 1.00
w, /4 /2 /4 ) n4d w2 ajd )2

0.21%%  0.20**  0.99*%**  0.96*** 0.05* 0.06% 0.81*** (.80***

(b) Real root, the roots of (4.5) are p, and p,

1-8=0.97

pa  095*  080* 0.95* 1.00*
ez 0.75*  0.80*  0.95* 1.00*

0.06*  0.06* 0.08* 0.91***

table 1.1 T'is 150, and the model is the simplest of all; p=1, and p,=0is a
priori specified and utilized in constructing the test statistic. The empirically
determined size of the test agrees well with the nominal size. The power of
the testindicated by the figures with =+ increases as the demilitarized zone is
expanded below with a fixed T. The ideal would be that, as p, moves toward
I from below, the probability of the critical region remains low while p, is in
the demilitarized zone and then suddenly jumps up at p;=1. That is
impossible. In many applications of the equilibrium analysis of economics
the p that is quite close to unity is just as bad as the p equal to unity.
Assuming that this is generally accepted among economists we suggest
selecting 1 — § in the light of the power of the test at p = 1. The high power at
p=1 necessarily accompanies high powers at p> 1.

Tables 1.2a and 1.2b show the power at p,= 1 in the case where p=2 and
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Table 1.4a
P2TIQ®| > 4.364] T=150, 1,000 replications
p=1, &=1, 1-8=097
Ho U(z)
~ NG,
NGy =g
Po 0.92 0.92 0.95 0.95 0.98 0.98
Lo 0.50 5.00 0.50 5.00 0.50 5.00
0.06* 0.06* 0.08* 0.08* 0.13** 0.13**
Table 1.4b
P2TIQ0} > 4.364] Yo~N(©0,1), 1-8=0.97
s 0.90 0.90 0.95 0.95
o 0.05 0.50 0.05 0.50
0.06* 0.32* 0.08* 0.64*

wo=01s a priori specified in the model of the one root test. They show that
adequate power is secured with 1 —8=10.95 when T equals 100.

Table 1.3 shows the probability of the critical region in the two roots test,
where p=2 and p,=0is a priori specified. The empirically determined test
size agrees well with the nominal size.

As for the non-zero pg, the size of our tests crucially depends upon the
moments of the unobservable initial y,. In table 1.4a y, has the stationary
mean and variance, and the size is just as expected from the asymptotic
theory. In table 1.4b y, has zero mean in spite of u, being non-zero, and the
size of our test quickly approaches unity as p.§ deviates from zero in relation
to 0(2).

In our opinion the stationarity, which is our null hypothesis, should be a
property of a stochastic process defined over = —0,...,0,...,+ 00 even
though the process is observed only over r=1,...,T. It implies that y,
should have the stationary mean.

As for tests O and 0@ developed in section 1.5 our simulation studies
show (1) that the empirically determined test size roughly agrees with the
nominal size in so far as u, =0 is a priori specified and incorporated in the
test statistic, but (2) that the agreement becomes worse as uj deviates from
zero in relation to o unless 7T is extremely large. The reason can be
explained for the simplest model, (3.1). (S(p)y — ut)'(S(p)y — ) evaluated at
p=poand p=pqis



